Hydrogen storage of metal nitride by a mechanochemical reaction

Yoshitsugu Kojima* and Yasuaki Kawai

Toyota Central R&D Labs., Inc., Nagakute-cho, Aichi-gun, Aichi 480-1192, Japan. E-mail: kojima@mosk.tytlabs.co.jp; Fax: 181-561-63-6137; Tel: 181-561-63-5367

Received (in Cambridge, UK) 28th April 2004, Accepted 13th July 2004 First published as an Advance Article on the web 20th August 2004

Metal imides ($Li₂NH$, CaNH), a metal amide ($LiNH₂$) and metal hydrides (LiH, CaH2) were synthesized by ball milling of their respective metal nitrides (Li_3N, Ca_3N_2) in a H_2 atmosphere at 1 MPa and at room temperature.

Hydrogen (H_2) can be stored in tanks as compressed¹ or liquefied H_2^1 or by adsorption on carbon materials.¹⁻⁶ It can also be stored in H_2 -absorbing alloys⁷ or as a chemical hydride, such as NaB $H_4^{8,9}$ or NaAlH4, ¹⁰ as well as in an organic hydride, such as methylcyclohexane or decalin.¹¹ In recent years, attention has been given to metal nitrides.^{12,13} Chen et al. reported that metal nitride (L_i, N) absorbed hydrogen at high temperature (468–528 K).¹² For usable H2 storage, H2 absorption/desorption at ambient temperature is necessary and Ichikawa et al. demonstrated that a mixture of LiNH₂ and LiH prepared by a ball milling process lowered the temperature of H₂ desorption.¹³ Recently, it has been shown that chemical reaction can occur at room temperature during mechano-
chemical processing.^{14,15}

For the first time, we have demonstrated that metal imide, metal amide and metal hydride can be synthesized using a mechanochemical reaction of a metal nitride (Li₃N, Ca₃N₂) in a H₂ atmosphere at a pressure of 1 MPa and at room temperature. The starting materials for this mechanochemical reaction were lithium nitride (Li₃N) and calcium nitride (Ca₃N₂).[†] Mechanochemical reactions were performed in a planetary ball mill (Fritsch P-5). The mill container (Cr–Mo steel pot with an internal volume of 300 mL) was loaded with 5 g of metal nitride and 40 pieces of steel ball with a diameter of 9.5 mm. The metal nitrides were milled at 400 rpm for 20 h in a H_2 gas atmosphere at a pressure of 1 MPa at room temperature (296 K).

The products after ball milling were light brown, different from the dark brown starting materials (Fig. 1). The X-ray diffraction (XRD) intensity curves (Fig. 2) show the ball-milled $Li₃N$ is a mixture which includes Li_3N , Li_2NH , $LiNH_2$ and LiH .¹⁶ The diffraction peaks of the ball-milled Li₃N at 2θ of 38.3°, 44.5° and 64.8° are raised from (111), (200) and (220) planes of LiH in which its unit cell is cubic in shape.¹⁶ The unit cell of $Li₂NH$ is cubic in shape¹⁶ and the unit cell of $LiNH₂$ is tetragonal in shape.¹⁶ As the XRD curve of the $LiNH₂$ phase is quite similar to that of the Li2NH phase, it is difficult to characterize the hydrogenating reaction during ball milling only from the XRD curves. The strongest peak of the ball milled $Li₃N$ in the XRD curve is at about 33° , which comes from either Li₂O or LiOH. This contamination might originate from small leaks in the pulverizing system. The structure of the ball-milled $Li₃N$ was also investigated by infrared spectroscopy. Fig. 3 shows the infrared absorption spectra of the ball-milled Li₃N, Li₃N, LiNH₂ (Sigma-Aldrich, purity: 95%) and Li₂NH. Li₂NH was synthesized by decomposing LiNH₂ at 673 K

Fig. 2 X-ray diffraction intensity curves of ball-milled $Li₃N$ in $H₂$ and $Li₃N$ together with the data of LiH (JCPDS file No. 09-0189), Li₂NH (JCPDS) file No. 06-0417) and $LiNH₂$ (JCPDS file No. 06-0418).

under vacuum (0.1 Pa) for 1 h.¹² The N–H symmetric and asymmetric stretching vibrations of $LiNH₂$ occur at 3260 cm⁻¹ and 3315 cm⁻¹, respectively.¹⁷ Li₂NH gives rise to two characteristic bands at 3180 cm^{-1} and 3250 cm^{-1} . We notice that the ball-milled Li₃N contains Li₂NH and LiNH₂ due to the presence of these characteristic IR bands at 3180 cm⁻¹, 3260 cm⁻¹ and 3315 cm⁻¹. Thus, we believe that the ball-milled Li_3N in H_2 is partially converted to $Li₂NH$, $LiNH₂$ and possibly LiH. The O–H stretching vibration of LiOH is not in this region. This suggests that from the XRD curve, the peak at about 33° is Li₂O.

It has been reported that hydrogen storage in $Li₃N$ takes the following reaction path.¹²

$$
Li_3N + 2H_2 \leftrightarrow LiNH_2 + 2LiH \tag{1}
$$

 H_2 of 10.4 wt% $[2H_2/L_3N + 2H_2]$ can be stored in this reaction. The H_2 content of the ball-milled Li_3N determined using the Hydrogen Analyzer was 5.0 wt% and half of the theoretical value. The $H₂$ storage involved the following two-step reaction path.¹²

$$
Li_3N + 2H_2 \leftrightarrow Li_2NH + LiH + H_2 \leftrightarrow LiNH_2 + 2LiH \quad (2)
$$

We speculate that insufficient H_2 was supplied in $Li₃N$ powder, thus unreacted $Li₃N$ remained due to the decrease in the $H₂$ content during the ball milling.

Fig. 3 Infrared absorption spectra of ball-milled $Li₃N$ in $H₂$ and $Li₃N$ together with the data of $Li₂NH$ and $LiNH₂$.

Fig. 4 X-ray diffraction intensity curves of ball-milled $Ca₃N₂$ in H₂ and $Ca₃N₂$ together with the data of CaH₂ (JCPDS file No. 65-2384), Ca₂NH (JCPDS file No. 26-0308) and CaNH (JCPDS file No. 75-0430).

Fig. 5 Infrared absorption spectra of ball-milled $Ca₃N₂$ in H₂ and $Ca₃N₂$.

The XRD intensity curves of ball-milled Ca_3N_2 , CaH_2 and $Ca₂NH$ are shown in Fig. 4. Fig. 4 indicates that the ball-milled $Ca₃N₂$ in H₂ does not contain $Ca₃N₂$. We notice that the diffraction peaks of the ball-milled Ca₃N₂ at 2 θ of 27.9°, 30.1°, 31.8°, 41.5° and 60.0° are raised from (011), (200), (111), (211), (202) planes of $CaH₂$, in which the unit cell of $CaH₂$ is orthorhombic in shape.¹³ The unit cells of $Ca₂NH$ and CaNH are cubic in shape¹⁶ and their XRD curves are similar to each other.

The structure of the ball-milled $Ca₃N₂$ was also characterized by infrared spectroscopy. Fig. 5 shows the infrared absorption spectra of the ball-milled specimen in comparison to commercial $Ca₃N₂$.
The ball-milled specimen now contains a stretch at 3130 cm⁻¹, which is due to the presence of CaNH or $Ca₂NH$. The crystal structure of CaNH generated from XRD indicates the presence of an N–H bond, but the crystal structure generated by XRD shows that Ca₂NH does not have the bond. Thus, we found that the ballmilled $Ca₃N₂$ includes CaNH. The H₂ content of the ball-milled $Ca₃N₂$ examined using the Hydrogen Analyzer was 3.2 wt%. A very small amount of ammonia was detected using a gas detector tube $(4 \times 10^{-7}$ g NH₃/g ball-milled Ca₃N₂) in the ball-milled $Ca₃N₂$. Therefore, the major reaction of $Ca₃N₂$ and $H₂$ by the mechanochemical reaction can be expressed by equation (3)

$$
Ca3N2 + 2H2 \rightarrow CaH2 + 2CaNH
$$
 (3)

where the theoretical H_2 content obtained by equation (3) is 3.1 wt% $[2H_2/(CaH_2 + 2CaNH)]$. The H₂ absorption during milling suggests that the hydrogenation process is a two-step

process as follows. H_2 is firstly absorbed on new particle surfaces created by pulverization during initial milling. The absorbed $H₂$ reacts with metal nitride to form metal imide, metal amide and metal hydride under further high-energy ball impacts. Local temperature rise, induced by ball impacts, may also contribute to the hydrogenation reaction.

In conclusion, mixtures of metal imide, amide, hydride $(L_i)NH$, LiNH₂, LiH or CaNH, CaH₂) can be synthesized by a mechanochemical reaction of their respective metal nitride (L_i, N, Ca_3N_2) in a $H₂$ atmosphere at room temperature. The $H₂$ contents of the ballmilled Li_3N and Ca_3N_2 were 5.0 and 3.2 wt%, respectively.

The authors are greatly indebted to T. Noritake, Dr T. Hioki, N. Ohba, M. Yamamoto and Dr G. J. Shafer of the Toyota Central R&D Labs., Inc. for their help and discussions.

Notes and references

{ Li3N (Kojundo Chemical Laboratory Co., Ltd., Japan, molecular weight: 34.82, density: 1.38 g cm⁻³, purity: $>$ 99%) and Ca₃N₂ (Sigma-Aldrich, molecular weight: 148.25, density: 2.63 g cm^{-3} , purity: $> 99\%$) were used in this experiment. High purity H_2 gas ($> 99.99999\%$) was used as the reaction atmosphere. A ThermoNicolet AVATAR 360 E.S.P. FT-IR spectrometer with an ATR system was used for IR studies in the wavenumber region from 3400 to 2900 cm^{-1} in an inert atmosphere of N₂. X-ray diffraction intensity curves in an inert atmosphere (Ar) were recorded with CuKa radiation (50 kV, 300 mA) filtered by a monochromator using Rigaku Rint-TTR. The apertures of the first, second and third slits were 0.5, 0.5 and 0.15 mm, respectively. With the Horiba EMGA-621 Hydrogen Analyzer, H₂ contained in a specimen was extracted by heating at 2273 K in an inert gas (Ar). After column separation, H_2 was quickly analysed with a thermal conductivity detector.

- 1 A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, Nature, 1997, 386, 377.
- 2 R. Chahine and T. K. Bose, *Int. J. Hydrogen Energy*, 1994, 19, 161.
3 Y. Kojima and N. Suzuki. *Appl. Phys. Lett.* 2004. **84.** 4113.
- 3 Y. Kojima and N. Suzuki, *Appl. Phys. Lett.*, 2004, 84, 4113.
4 Y. Ye. C. C. Ahn. C. Witham. B. Fultz. J. Liu. A. G. Rinzler. I
- Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith and R. E. Smalley, Appl. Phys. Lett., 1999, 74, 2307.
- 5 A. Chambers, C. Park, R. T. K. Baker and N. M. Rodriguez, J. Phys. Chem. B, 1998, 102, 4253.
- 6 C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, R. C. Bowman, Jr and B. Fultz, Appl. Phys. Lett., 1998, 73, 3378.
- 7 T. Tamura, Y. Tominaga, K. Matumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura and M. Okada, J. Alloys Compd., 2002, 330–332, 522.
- 8 S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo and M. Binder, J. Power Sources, 2000, 85, 186.
- 9 Y. Kojima, K. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai and H. Hayashi, Int. J. Hydrogen Energy, 2002, 27, 1029.
- 10 B. Bogdanović and M. Schwickardi, J. Alloys Compd., 1997, 253-254, 1.
- 11 E. Newson, Th. Haueter, P. Hottinger, F. Von Roth, G. W. H. Scherer and Th. H. Schucan, Int. J. Hydrogen Energy, 1998, 23, 905.
- 12 P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, Nature, 2002, 420, 302.
- 13 T. Ichikawa, S. Isobe, N. Hanada and H. Fujii, J. Alloys Compd., 2004, 365, 271.
- 14 V. P. Balema, J. W. Wiench, M. Pruski and V. Pecharsky, J. Am. Chem. Soc., 2002, 124, 6244.
- 15 V. P. Balema, K. W. Dennis and V. K. Pecharsky, Chem. Commun., 2000, 1665.
- 16 Powder Diffraction File, International Center for Diffraction Data (JCPDS), Pennsylvania, USA, 2001.
- 17 J.-P. O. Bohger, R. R. Ebman and H. Jacob, J. Mol. Struct., 1995, 348, 325.