Hydrogen storage of metal nitride by a mechanochemical reaction

Yoshitsugu Kojima* and Yasuaki Kawai

Toyota Central R&D Labs., Inc., Nagakute-cho, Aichi-gun, Aichi 480-1192, Japan. E-mail: kojima@mosk.tytlabs.co.jp; Fax: +81-561-63-6137; Tel: +81-561-63-5367

Received (in Cambridge, UK) 28th April 2004, Accepted 13th July 2004 First published as an Advance Article on the web 20th August 2004

Metal imides (Li₂NH, CaNH), a metal amide (LiNH₂) and metal hydrides (LiH, CaH₂) were synthesized by ball milling of their respective metal nitrides (Li₃N, Ca₃N₂) in a H₂ atmosphere at 1 MPa and at room temperature.

Hydrogen (H₂) can be stored in tanks as compressed¹ or liquefied H₂¹ or by adsorption on carbon materials.¹⁻⁶ It can also be stored in H₂-absorbing alloys⁷ or as a chemical hydride, such as NaBH₄^{8,9} or NaAlH₄,¹⁰ as well as in an organic hydride, such as methylcyclohexane or decalin.¹¹ In recent years, attention has been given to metal nitrides.^{12,13} Chen *et al.* reported that metal nitride (Li₃N) absorbed hydrogen at high temperature (468–528 K).¹² For usable H₂ storage, H₂ absorption/desorption at ambient temperature is necessary and Ichikawa *et al.* demonstrated that a mixture of LiNH₂ and LiH prepared by a ball milling process lowered the temperature of H₂ desorption.¹³ Recently, it has been shown that chemical reaction can occur at room temperature during mechanochemical processing.^{14,15}

For the first time, we have demonstrated that metal imide, metal amide and metal hydride can be synthesized using a mechanochemical reaction of a metal nitride (Li₃N, Ca₃N₂) in a H₂ atmosphere at a pressure of 1 MPa and at room temperature. The starting materials for this mechanochemical reaction were lithium nitride (Li₃N) and calcium nitride (Ca₃N₂).† Mechanochemical reactions were performed in a planetary ball mill (Fritsch P-5). The mill container (Cr–Mo steel pot with an internal volume of 300 mL) was loaded with 5 g of metal nitride and 40 pieces of steel ball with a diameter of 9.5 mm. The metal nitrides were milled at 400 rpm for 20 h in a H₂ gas atmosphere at a pressure of 1 MPa at room temperature (296 K).

The products after ball milling were light brown, different from the dark brown starting materials (Fig. 1). The X-ray diffraction (XRD) intensity curves (Fig. 2) show the ball-milled Li₃N is a mixture which includes Li₃N, Li₂NH, LiNH₂ and LiH. ¹⁶ The diffraction peaks of the ball-milled Li₃N at 2θ of 38.3° , 44.5° and 64.8° are raised from (111), (200) and (220) planes of LiH in which its unit cell is cubic in shape. 16 The unit cell of Li₂NH is cubic in shape¹⁶ and the unit cell of LiNH₂ is tetragonal in shape.¹⁶ As the XRD curve of the LiNH₂ phase is quite similar to that of the Li₂NH phase, it is difficult to characterize the hydrogenating reaction during ball milling only from the XRD curves. The strongest peak of the ball milled Li₃N in the XRD curve is at about 33°, which comes from either Li₂O or LiOH. This contamination might originate from small leaks in the pulverizing system. The structure of the ball-milled Li₃N was also investigated by infrared spectroscopy. Fig. 3 shows the infrared absorption spectra of the ball-milled Li₃N, Li₃N, LiNH₂ (Sigma-Aldrich, purity: 95%) and Li₂NH. Li₂NH was synthesized by decomposing LiNH₂ at 673 K

Fig. 1 Change of colour by mechanochemical reaction.

Fig. 2 X-ray diffraction intensity curves of ball-milled Li_3N in H_2 and Li_3N together with the data of LiH (JCPDS file No. 09-0189), Li_2NH (JCPDS file No. 06-0417) and LiNH₂ (JCPDS file No. 06-0418).

under vacuum (0.1 Pa) for 1 h.¹² The N–H symmetric and asymmetric stretching vibrations of LiNH₂ occur at 3260 cm⁻¹ and 3315 cm⁻¹, respectively.¹⁷ Li₂NH gives rise to two characteristic bands at 3180 cm⁻¹ and 3250 cm⁻¹. We notice that the ball-milled Li₃N contains Li₂NH and LiNH₂ due to the presence of these characteristic IR bands at 3180 cm⁻¹, 3260 cm⁻¹ and 3315 cm⁻¹. Thus, we believe that the ball-milled Li₃N in H₂ is partially converted to Li₂NH, LiNH₂ and possibly LiH. The O–H stretching vibration of LiOH is not in this region. This suggests that from the XRD curve, the peak at about 33° is Li₂O.

It has been reported that hydrogen storage in Li_3N takes the following reaction path. 12

$$\text{Li}_3\text{N} + 2\text{H}_2 \leftrightarrow \text{Li}\text{NH}_2 + 2\text{Li}\text{H}$$
 (1)

 H_2 of 10.4 wt% $[2H_2/Li_3N + 2H_2]$ can be stored in this reaction. The H_2 content of the ball-milled Li_3N determined using the Hydrogen Analyzer was 5.0 wt% and half of the theoretical value. The H_2 storage involved the following two-step reaction path.¹²

$$Li_3N \,+\, 2H_2 \leftrightarrow Li_2NH \,+\, LiH \,+\, H_2 \leftrightarrow LiNH_2 \,+\, 2LiH \quad (2)$$

We speculate that insufficient H_2 was supplied in Li_3N powder, thus unreacted Li_3N remained due to the decrease in the H_2 content during the ball milling.

Fig. 3 Infrared absorption spectra of ball-milled Li_3N in H_2 and Li_3N together with the data of Li_2NH and Li_3NH .

Fig. 4 X-ray diffraction intensity curves of ball-milled Ca_3N_2 in H_2 and Ca_3N_2 together with the data of CaH_2 (JCPDS file No. 65-2384), Ca_2NH (JCPDS file No. 26-0308) and CaNH (JCPDS file No. 75-0430).

Fig. 5 Infrared absorption spectra of ball-milled Ca₃N₂ in H₂ and Ca₃N₂.

The XRD intensity curves of ball-milled Ca_3N_2 , CaH_2 and Ca_2NH are shown in Fig. 4. Fig. 4 indicates that the ball-milled Ca_3N_2 in H_2 does not contain Ca_3N_2 . We notice that the diffraction peaks of the ball-milled Ca_3N_2 at 2θ of 27.9° , 30.1° , 31.8° , 41.5° and 60.0° are raised from (011), (200), (111), (211), (202) planes of CaH_2 , in which the unit cell of CaH_2 is orthorhombic in shape. The unit cells of Ca_2NH and CaNH are cubic in shape 16 and their XRD curves are similar to each other.

The structure of the ball-milled Ca_3N_2 was also characterized by infrared spectroscopy. Fig. 5 shows the infrared absorption spectra of the ball-milled specimen in comparison to commercial Ca_3N_2 . The ball-milled specimen now contains a stretch at 3130 cm⁻¹, which is due to the presence of CaNH or Ca_2NH . The crystal structure of CaNH generated from XRD indicates the presence of an N–H bond, but the crystal structure generated by XRD shows that Ca_2NH does not have the bond. Thus, we found that the ball-milled Ca_3N_2 includes CaNH. The H_2 content of the ball-milled Ca_3N_2 examined using the Hydrogen Analyzer was 3.2 wt%. A very small amount of ammonia was detected using a gas detector tube $(4 \times 10^{-7} \text{ g NH}_3/\text{g ball-milled } Ca_3N_2)$ in the ball-milled Ca_3N_2 . Therefore, the major reaction of Ca_3N_2 and Ca_3N_2 was also characterized by equation (3)

$$Ca_3N_2 + 2H_2 \rightarrow CaH_2 + 2CaNH \tag{3}$$

where the theoretical H_2 content obtained by equation (3) is 3.1 wt% [2 H_2 /(Ca H_2 + 2CaNH)]. The H_2 absorption during milling suggests that the hydrogenation process is a two-step

process as follows. H_2 is firstly absorbed on new particle surfaces created by pulverization during initial milling. The absorbed H_2 reacts with metal nitride to form metal imide, metal amide and metal hydride under further high-energy ball impacts. Local temperature rise, induced by ball impacts, may also contribute to the hydrogenation reaction.

In conclusion, mixtures of metal imide, amide, hydride (Li_2NH , LiNH_2 , LiH or CaNH, CaH_2) can be synthesized by a mechanochemical reaction of their respective metal nitride (Li_3N , Ca_3N_2) in a H_2 atmosphere at room temperature. The H_2 contents of the ball-milled Li_3N and Ca_3N_2 were 5.0 and 3.2 wt%, respectively.

The authors are greatly indebted to T. Noritake, Dr T. Hioki, N. Ohba, M. Yamamoto and Dr G. J. Shafer of the Toyota Central R&D Labs., Inc. for their help and discussions.

Notes and references

† Li₃N (Kojundo Chemical Laboratory Co., Ltd., Japan, molecular weight: 34.82, density: 1.38 g cm⁻³, purity: > 99%) and Ca₃N₂ (Sigma-Aldrich, molecular weight: 148.25, density: 2.63 g cm⁻³, purity: > 99%) were used in this experiment. High purity H₂ gas (> 99.99999%) was used as the reaction atmosphere. A ThermoNicolet AVATAR 360 E.S.P. FT-IR spectrometer with an ATR system was used for IR studies in the wavenumber region from 3400 to 2900 cm⁻¹ in an inert atmosphere of N₂. X-ray diffraction intensity curves in an inert atmosphere (Ar) were recorded with CuKα radiation (50 kV, 300 mA) filtered by a monochromator using Rigaku Rint-TTR. The apertures of the first, second and third slits were 0.5, 0.5 and 0.15 mm, respectively. With the Horiba EMGA-621 Hydrogen Analyzer, H₂ contained in a specimen was extracted by heating at 2273 K in an inert gas (Ar). After column separation, H₂ was quickly analysed with a thermal conductivity detector.

- A. C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune and M. J. Heben, *Nature*, 1997, 386, 377.
- 2 R. Chahine and T. K. Bose, Int. J. Hydrogen Energy, 1994, 19, 161.
 - Y. Kojima and N. Suzuki, Appl. Phys. Lett., 2004, 84, 4113.
- 4 Y. Ye, C. C. Ahn, C. Witham, B. Fultz, J. Liu, A. G. Rinzler, D. Colbert, K. A. Smith and R. E. Smalley, *Appl. Phys. Lett.*, 1999, 74, 2307.
- 5 A. Chambers, C. Park, R. T. K. Baker and N. M. Rodriguez, J. Phys. Chem. B, 1998, 102, 4253.
- 6 C. C. Ahn, Y. Ye, B. V. Ratnakumar, C. Witham, R. C. Bowman, Jr and B. Fultz, *Appl. Phys. Lett.*, 1998, 73, 3378.
- 7 T. Tamura, Y. Tominaga, K. Matumoto, T. Fuda, T. Kuriiwa, A. Kamegawa, H. Takamura and M. Okada, *J. Alloys Compd.*, 2002, 330–332, 522.
- 8 S. C. Amendola, S. L. Sharp-Goldman, M. S. Janjua, M. T. Kelly, P. J. Petillo and M. Binder, *J. Power Sources*, 2000, **85**, 186.
- 9 Y. Kojima, K. Suzuki, K. Fukumoto, M. Sasaki, T. Yamamoto, Y. Kawai and H. Hayashi, *Int. J. Hydrogen Energy*, 2002, 27, 1029.
- 10 B. Bogdanović and M. Schwickardi, J. Alloys Compd., 1997, 253-254, 1.
- 11 E. Newson, Th. Haueter, P. Hottinger, F. Von Roth, G. W. H. Scherer and Th. H. Schucan, *Int. J. Hydrogen Energy*, 1998, 23, 905.
- 12 P. Chen, Z. Xiong, J. Luo, J. Lin and K. L. Tan, Nature, 2002, 420, 302.
- 13 T. Ichikawa, S. Isobe, N. Hanada and H. Fujii, *J. Alloys Compd.*, 2004, 365, 271.
- 14 V. P. Balema, J. W. Wiench, M. Pruski and V. Pecharsky, J. Am. Chem. Soc., 2002, 124, 6244.
- 15 V. P. Balema, K. W. Dennis and V. K. Pecharsky, Chem. Commun., 2000, 1665.
- 16 Powder Diffraction File, International Center for Diffraction Data (JCPDS), Pennsylvania, USA, 2001.
- 17 J.-P. O. Bohger, R. R. Eβman and H. Jacob, *J. Mol. Struct.*, 1995, **348**, 325.